低炭水化物食と低脂肪食のどちらが効果的か患者毎に予測 糖尿病の食事療法を個別化 J-DOIT1の成果を活用 京都医療センター

2023.12.14
 京都医療センターなどの研究グループが、糖尿病の食事療法を最適に個別化できるシミュレーションモデルを開発した。2型糖尿病発症予防のための介入試験「J-DOIT1」の成果を用いて開発したもの。体重とHbA1cの変化を個別に予測できるという。

 個別に低炭水化物ダイエットが向いているか、低脂肪ダイエットが向いているかを予測することなどができる。「医師や管理栄養士が、患者の目標に応じて個別の栄養戦略を最適化するのに役立つ可能性がある」と、研究者は述べている。

食事療法は個別に最適化すると最大の効果を得られる カロリーバランスだけでは不十分

 研究は、京都医療センター臨床研究センター予防医学研究室の坂根直樹室長らの研究グループによるもの。研究成果は、「PLOS ONE」に掲載された。坂根室長らはこれまで、個人に合わせた生活習慣を提案する糖尿病シミュレーションモデルを開発し、その効果を検証している。

 2型糖尿病発症予防のための介入試験「J-DOIT1」(研究リーダー:葛谷英嗣氏)の被験者2,607人(追跡期間の中央値は4.2年)のデータベースを用いて、体重やHbA1cの変化を個別に予測する糖尿病発症予測システムを開発した。

 「J-DOIT1」では、空腹時血糖値の異常が示された2,607人を介入群と対照群に割付し、電話支援によるサポート介入を実施した大規模な試験で、追跡期間の中央値は4.2年だった。

 生活習慣への介入は、2型糖尿病の発症・進行を遅らせることが示されているが、生活介入に対する反応には個人差があるため、どのような生活習慣を推奨するかを決定するのは難しい。

 開発した糖尿病シミュレーションモデルでは、年齢・BMI・血圧・血液検査・食事・運動・睡眠・変化ステージなどの生活習慣などから症例を抽出し、モデルを個人毎に、最適なエネルギー摂取量や勧められる栄養素バランスを推定。また、エネルギー摂取量をどの程度減じるかで5年間の推移を予測し、さらには個人毎に炭水化物などの比率を変えることで最適な比率による各種の生体指標の変化を予測する。

 研究グループは今回、「J-DOIT1」の被験者112人を選択し、個人毎の体重とHbA1cの時間経過に合わせて、メカニズム モデルを調整。インスリン感受性などの生理学的パラメータ、および食事摂取量などの生活習慣パラメータと結果の変動性との関係を評価した。

 このシミュレーション分析により、減量のために個別に最適化された食事を予測し、被験者の体重とHbA1cの時間経過を予測した。生活習慣介入による体重とHbA1cの4年間の時間的変化を、それぞれ1.0±1.2kgと0.14%±0.18%の平均予測誤差で予測。

 その結果、バイオマーカーがもっとも改善された被験者ともっとも改善されなかった被験者では、モデルで推定されたエネルギーバランスに有意差が示されなかった。エネルギーバランスだけでは体重などを適切に予測できない可能性が示された。

 研究グループは、ベースラインから介入後1年までの期間に、体重の5~7%の減少を達成するための最適な食事を決定するためのシミュレーションを作成し、炭水化物、脂肪、タンパク質の摂取量にさまざまなランダムな変更を加えてシミュレートした。

 その結果、設定された体重減少を達成するために、一連の最適な食事パターンがあり、そのパターンは各被験者で個別なものであることや、炭水化物と脂肪の変化に対する感受性は患者によって異なることが示唆された。

 炭水化物と脂質の割合を変えたシミュレーションを行うことで、個別に低炭水化物ダイエットが向いているか、低脂肪ダイエットが向いているかを予測することができるという。

 このアプローチにより、59人の被験者のうち48人に最適化した食事を特定できた。たとえば、被験者(ID 41)が5~7%の減量に成功するには、炭水化物摂取量は広い範囲で変化する可能性があるが、脂肪の変化は-25%から-10%のあいだでより狭く制限する必要があるという。被験者(ID 44)では、脂肪の変化は広い範囲で変化する可能性があるが、炭水化物の変化は-25%から-5%とより狭い範囲に制限する必要がある。

 「作成した糖尿病モデルにより、生活習慣介入の結果として、体重と血糖管理の変化をシミュレートできることが示された。このモデルを用いることで、この患者には緩やかな低炭水化物食、この患者には低脂肪食といったように、糖尿病の食事療法を個別化できるようになる。医師や管理栄養士が、患者の目標に応じて個別の栄養戦略を最適化するのに役立つ可能性がある」と、研究者は述べている。

Optimization of nutritional strategies using a mechanistic computational model in prediabetes: Application to the J-DOIT1 study data (PLOS ONE 2023年11月30日)

[ TERAHATA / 日本医療・健康情報研究所 ]

糖尿病・内分泌プラクティスWeb 糖尿病・内分泌医療の臨床現場をリードする電子ジャーナル

脂質異常症の食事療法のエビデンスと指導 高TG血症に対する治療介入を実践 見逃してはいけない家族性高コレステロール血症
SGLT2阻害薬を高齢者でどう使う 週1回インスリン製剤がもたらす変革 高齢1型糖尿病の治療 糖尿病治療と認知症予防 高齢者糖尿病のオンライン診療 高齢者糖尿病の支援サービス
GLP-1受容体作動薬の種類と使い分け インスリンの種類と使い方 糖尿病の経口薬で最低限注意するポイント 血糖推移をみる際のポイント~薬剤選択にどう生かすか~ 糖尿病関連デジタルデバイスの使い方 1型糖尿病の治療選択肢(インスリンポンプ・CGMなど) 二次性高血圧 低ナトリウム血症 妊娠中の甲状腺疾患 ステロイド薬の使い分け 下垂体機能検査
NAFLD/NASH 糖尿病と歯周病 肥満の外科治療-減量・代謝改善手術- 骨粗鬆症治療薬 脂質異常症の治療-コレステロール低下薬 がんと糖尿病 クッシング症候群 甲状腺結節 原発性アルドステロン症 FGF23関連低リン血症性くる病・骨軟化症 褐色細胞腫

医薬品・医療機器・検査機器

糖尿病診療・療養指導で使用される製品を一覧で掲載。情報収集・整理にお役立てください。

一覧はこちら

最新ニュース記事

よく読まれている記事

関連情報・資料